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Abstract: Recently the possibility to visualize interactively volumetric datasets in the Web has opened new methods of
exploration and sharing of 3D images coming from different fields. At the same time, VR technologies are
gaining momentum in the society, where several HMD’s are ready to be bought. This paper presents how
volumetric datasets represented as DICOM images can be loaded and visualized interactively in a WebVR
compatible setup. DICOM images are loaded from local or remote repositories into X3D volume rendering
nodes, which are displayed in the VR devices using WebVR technology. The results show that WebVR
and X3D are compatible web technologies that can be joined together to provide easy and extensible tools
to interact with DICOM datasets. Some enhancements for the interactive VR and non-VR experiences are
presented.

1 Introduction

DICOM datasets are the de-facto interchange file
format in the medical field. Volumetric datasets are
naturally represented as sets of images, covering dif-
ferent phases of the medical procedures. Typically,
CT and MRI scans are composed of 2D slices that can
be visualized and analyzed with specialized software.
These slices can be processed and inspected individ-
ually, but they provided more information if they are
considered as a whole volumetric dataset.

The introduction of volume rendering techniques
in desktop platforms was a milestone in the medical
field. New methodologies and algorithms were imple-
mented to take into account the 3D information em-
bedded in the set of 2D slices that compose the scans.

In the last years, the web paradigm has in-
troduced new visualization, sharing and interac-
tion schema. Web technologies have been always
a way to democratize the technological advances
to the public, and therefore, new open standards
were defined to harmonize the web ecosystem: The
X3D (Web3DConsortium, 2014), WebGL (Khronos,
2016) and WebVR (WebVR, 2016) standards are rel-
evant players in this standardization process.

X3D standard defines a set of nodes for volumet-
ric datasets, but they do not materialize the precise

Figure 1: Volume rendering example showing the AGE-
CANONIX volumetric dataset taken from the OsiriX repos-
itory (OsiriX, 2016).

functionality that the users require to interact with the
volumetric information. X3DOM (Fraunhofer IGD,
2014) provides a WebGL based implementation of the
X3D standard, and it can be used to visualize complex
3D scenes in the Web.



Figure 2: Integration mechanisms devised to transfer the DICOM content into the X3DOM framework. Left) direct utilisation
of a canvas. Right) load mechanism using toDataURL function.

The introduction of new VR devices provides new
means to create virtual experiences for the users. Typ-
ically, state-of-the-art gaming companies ship their
standalone products, fully tested to provide the best
immersive experiences. This kind of developments
are very oriented to the specific product and very
costly to implement, relying in the commercial suc-
cess to recover the investment.

On the other hand, web technologies provide a
rich multimedia ecosystem to anyone in the world
with access to the Internet: text, audio, video and
interactive 3D thanks to WebGL-based technolo-
gies. WebVR is the next step in this technological
chain, aiming to provide support to the current head-
mounted displays (HMD) in the market through the
Web.

We identify web technologies as a key to give
easy access to volume visualizations for both special-
ists and non-specialists in different scientific fields.
The incorporation of the latest generation of Web
APIs like WebVR has opened new technological chal-
lenges. This work presents how volumetric datasets,
represented as DICOM files and stored locally or re-
motely, can be interactively visualized in web appli-
cations composed of the latest web technologies (see
Fig. 1). The preliminary research findings show that
this combination enhances the user experience in the
interaction with volumetric datasets, hiding the devel-
opment complexity under a clean and clear declara-
tive X3D scene.

This paper is structured as follows. The next sec-
tion provides a summary of the related work. Sect. 3
presents the work carried out to provide a combina-
tion of volume rendering on the web with WebVR us-
ing the X3DOM framework. Finally, this paper con-
cludes with the conclusions and future work.

2 Related work

This section is divided into two parts: the first one
describes previous work regarding the volume ren-
dering raycasting algorithm and the second one de-
scribes how the DICOM datasets can be loaded using

JavaScript libraries.

2.1 Volume rendering algorithm

Volumetric visualization has been extensively studied
over the years. Nowadays it is used on a variety of
fields, but especially in medicine. Different volume
visualization techniques can be found in the literature;
our work focuses in ray-casting. Originally intro-
duced by Kajiya and Herzen (Kajiya and Von Herzen,
1984), ray-casting method was later translated to the
GPU by Kruger and Westermann (Kruger and West-
ermann, 2003).

Our work is integrated in the X3DOM frame-
work under the volume rendering component (Arbe-
laiz et al., 2016). Volumetric rendering is performed
with a single-pass ray-casting algorithm. In a nut-
shell, in the scene a 3D unit cube is rendered and
it will be used to place the actual volume data dur-
ing the ray-casting. Using the programmable pipeline
provided by WebGL, a single pair of vertex and frag-
ment shaders is used. In the vertex shader, each vertex
position of the cube is multiplied by the ModelView
matrix and the Projection matrix, transforming the
vertices into clip space.

In the fragment shader, the ray traversal is actually
computed. When the triangles of the cube are raster-
ized into fragments, the interpolated vertices of the
unitary cube represent 3D texture coordinates. From
the inverse ModelView matrix the camera position can
be obtained. By subtracting the interpolated vertex
position with the camera position the ray direction can
be determined. Taking both the interpolated position
as the ray origin and the ray direction, using a fixed
length loop statement in the fragment shader the ray
traversal is created. For an in depth description of the
single-pass approach, we refer the reader to Mobeen
et al. (Mobeen and Feng, 2012).

The ray traversal is discretized into a series of
steps. At each step the position of the ray is used
as a 3D texture coordinates to fetch the volume data.
However, WebGL does not support 3D textures, as
first stated by Congote et al. (Congote et al., 2011)
this can be overcome using a texture atlas (ImageTex-



Figure 3: Architecture and modules of the web application. DICOM images are stored in a local or remote repository. The
web application is loaded from Internet and presented to the user in non-VR mode. The web application process the DICOM
dataset to create the ImageTextureAtlas and prepare the X3D scene. WebVR is used to display the VR mode to the users.

tureAtlas): the cross sectional slices that compose the
volume are tiled into a matrix configuration to com-
pose a single 2D texture.

2.2 DICOM Datasets Visualization

Volumetric data is often used in the medical field in a
large variety of situations: from research and diagno-
sis to educational purposes. In terms of visualization
interactivity and usability, mobile platforms should
provide the same tools as their desktop counterpart.

In pursuit of a ubiquitous medical volumetric vi-
sualization, the support of DICOM file format is nec-
essary as DICOM is the standard de-facto that the
software of the medical imaging devices uses to store
their scans.

Medical imaging devices do not only produce the
actual set of 2D slices. They are linked with a large
amount of metadata related to the patient health infor-
mation and other medical procedures. DICOM is the
medical image standard to store and transfer all this
information from and between imaging devices and
medical image storage repositories (Fernandez-Bayó
et al., 2000). The wide utilization of DICOM by all
manufacturers had a major impact on usability of the
file format. Resulting sometimes in a variable set of
tags to be read, interpreted and combined in order to
achieve coherent restitution of the images for the final
user.

Cornerstone JavaScript library (Cornerstone,
2016) provides a set of functions to read and interact
with the 2D set of slices stored in DICOM files and it

relies on dicomParser to load DICOM tags, including
pixel data.

The combination of dicomParser with the volume
rendering nodes defined in a X3D scene provides a
general and ubiquitous solution to the problem: the
slices pixel data is extracted from the DICOM file
and then, a texture atlas is created and linked to the
required texture field of the VolumeData X3D node.

Fig. 2 shows two ways to accomplish the informa-
tion transformation from DICOM files to the X3DOM
framework. The first one is to use a <canvas> node
defined inside the ImageTextureAtlas node and then,
using JavaScript, fill the canvas with a texture atlas.

The second integration method is to use the same
auxiliary <canvas> node but defined out of the Im-
ageTextureAtlas node. The VolumeData node uses an
empty ImageTextureAtlas (no real URL is given). The
JavaScript loader draws the atlas texture in this canvas
as before, and then, the correct URL is provided as a
DataURL, which means that the whole volumetric in-
formation is encoded and passed in the URL.

3 Web technologies architecture

This work presents how volumetric DICOM
datasets composed of 2D slices can be interactively
visualized in modern desktop browsers using exclu-
sively open web technologies. The preliminary results
provide an interactive VR user experience by present-
ing an adequate web interface that interacts dynami-
cally with the volume rendering process.



Figure 4: Asynchronous loading process from DICOM images to ImageTextureAtlas. Image shows an intermediate state
where the dataset is not fully loaded and hence, some subtiles are not filled into the final HTML5 canvas.

In this section, we describe the architecture (see
Fig. 3), modules and their relationships among the se-
lected open web technologies. In our work, the cur-
rent stack of Web technologies are WebGL, WebVR,
X3DOM, JavaScript, SVG and CSS. These tools pro-
vide us with necessary base technology to develop
web VR and interactive applications to the users.

Next Subsection 3.1 introduces the technological
approach to load DICOM datasets into data structures
ready to be used with WebGL and X3DOM. Subsec-
tion 3.2 presents some interactive modifications that
can be performed to the original DICOM datasets
in order to select the Window Level. Subsection 3.3
shows our interactive Transfer Function editor, ca-
pable of fine tuning the rendering output of the vol-
ume rendering algorithms. Finally, Subsection 3.4
presents how volumetric datasets can be visualized
from the inside of the volume, instead of the typi-
cal visualization from outside the bounding box of the
dataset.

3.1 Asynchronous atlas generation

The construction of the texture atlas is a technical
constraint of the Web based volume rendering algo-
rithm. An integration of the native Drag and Drop
HTML5 API into our web application provides an
easy and transparent approach for the generation of
the required ImageTextureAtlas (see Fig. 4). With-
out this functionality, the atlas creation must be per-
formed at the server in a pre-processing step. Then,
it can be transfered to the client device as an Image-
TextureAtlas image. With the proposed drag and drop

functionality we can avoid this step .
The DICOM data files can contain the volume

data in a single file, whereas, usually each DICOM
file represents a single slice with the additional meta-
data information. As stated in Sect. 2.2 using the di-
comParser open source library we can parse the vol-
ume data and compose the atlas in the background. In
our prototype, the rendering canvas is equipped with
drag and drop functionality. The user can drag a set
of DICOM files hosted in their own device filesystem
and drop them in the rendering canvas. The received
files will be ordered by filename and composed into
an atlas which is rendered in a hidden HTML5 2D
canvas.

This feature is specially interesting, because it
does not enforce users to adapt the volume data files
to a certain file format. As a consequence, it makes
it compatible with other application that output their
results as DICOM or other browser compatible com-
mon image formats, such as: JPG or PNG.

3.2 DICOM metadata

DICOM files contain rich information that can be
used in the UI presentation. Some metadata attributes
can be added to the UI (capture date, acquisition ma-
chine, software version...) and others give informa-
tion about the dataset itself, i.e., the number of slices
and their resolution go normally with the pixel resolu-
tion (8, 10, 12 or more bits per channel). Taking into
account that the display devices we are targeting can
only display RGBA (8 bits per channel), a region of
interest is defined with the aid of window width and



Figure 5: INCISIX dataset from the OsiriX reposi-
tory (OsiriX, 2016) with different window levels. On the
top window center= 395 and window width= 2068. On the
bottom, window center= 1056 and window width= 1489.

window center levels from the DICOM data.
These values specify a linear conversion from

stored pixel values in the DICOM file to values to
be displayed on the screen. To change these lev-
els, we provide dynamic sliders to the users. The
user can manually discard or extend the desired im-
age data range by modifying the window width and
window center levels. As a result, the contrast be-
tween structures within the volume can be adjusted.
Fig. 5 shows the INCISIX dataset from OsiriX li-
brary (OsiriX, 2016) with different window levels.

3.3 Interactive transfer function

In volume rendering, applying a transfer function
(TF) is one of the most common techniques to illus-
trate a volume. A TF is a lookup function that maps
each scalar value of the dataset [0-255] with a given
color and opacity. Typically, a set of predefined and
general TF can be used (from red to green to blue,
rainbow schema...) but it is very common to find
domain-specific TF’s (like in the weather radar infor-

mation) that are widely accepted by the experts of that
domain. Additionally, it is quite common to offer the
possibility to load a predefined TF, but with the pos-
sibility of customizing it interactively.

In our web application, we have developed a web
TF editor based on the scalable vector graphics (SVG)
technology. In Fig. 6 the TF editor can be seen at the
bottom of the captures. In this interactive chart, an
histogram of the volume data values is plotted. Then
the user can add control points and assign a color to
each of them. Colors will be interpolated between
control points and the opacity will be calculated in
function of the control points height. As a result of
the user interaction, a 255 pixel width 1D RGBA im-
age is generated. This image is directly passed as a
texture input to the GPU and therefore, any changes
in the TF editor have an immediate effect in the vol-
ume rendering visual output.

3.4 Inside exploration of volume data

Our work aims to the interactive visualization un-
der VR technologies, where the user can perceive the
stereoscopic effect of the 3D scene. In other words,
the user can perceive distances and what is near and
far in the volumetric information. During the inspec-
tion of the dataset, the user can move freely around
the dataset, and therefore, the dataset can be located
further or closer to the user. When the user gets closer
to the volumetric object, it would be very intrusive
for the virtual experience if the object suddenly dis-
appears. As the volume rendering algorithms render
the output on the surface of a 3D cube, if the user en-
ters inside this cube, nothing would be seen.

Some modifications of the raycasting algorithms
have been developed to allow correct visualizations of
the volumetric dataset even if the user enters the 3D
cube. An inside exploration allows the user to easily
discern the internal composition of the volume rather
than looking at the cross-sectional 2D images.

In our implementation we have allowed the ex-
ploration of the volume by dynamically changing
the initial position of the ray origin (see Fig. 7).
First the camera position is obtained from the inverse
ModelView matrix. Then using the maximum and
minimum boundaries of the cube, it can be deter-
mined whether or not the camera is inside the vol-
ume. If the camera is outside the cube, the ray origin
is assigned as the interpolated vertex position from
the output of the vertex shader (varying vertex po-
sition), if not, the ray origin is the camera position.

Without changing the ray origin, the camera face
of the cube will be clipped, making it impossible to
examine the inside. Thus, back face culling must be



Figure 6: Volume rendering web application interface pro-
totype in non-VR mode.

Figure 7: The visualization from the inside of the dataset
requires that the user moves the virtual camera location into
the cube that holds the volumetric dataset. Zoom function-
ality can be triggered with the wheel mouse.

disabled when internal exploration is required. When
the camera is moved into the cube, the ray-casting di-
rection for each ray is obtained by subtracting the in-
terpolated back face vertex position with the camera
position.

3.5 WebVR interactive application

The creation of new VR oriented content with the
WebVR (WebVR, 2016) framework is simplified to
the extent that only knowledge of HTML, JavaScript,
CSS and related web technologies are required to de-
velop VR experiences. But even with this simplic-
ity, teachers, researchers and other non-technological-
aware target groups are not prepared for such a task.

To solve this issue, X3DOM provides a We-
bGL implementation of the X3D representation. The
declarative nature of X3D scene suits better for most
of the people who want to deploy VR experiences
but lack the technological capabilities of doing every-
thing by themselves. We have combined our proposed
medical functionalities implemented in the X3DOM
framework and test them along with WebVR.

Our preliminary demonstrations have been tested
with the Oculus Rift DK2, under Windows 10, with
the 1.5 and 1.6 runtimes. A developer build of
the Chrome browser with WebVR support (Chrome,
2016) has been used to test the VR developments.

The technical limitations regarding this setup will
be fully overcome when the WebVR 1.0 implemen-
tations of the standard reaches the release version of
the most common browsers: Firefox, Chrome, Safari
and Edge. Additionally, it is expected that mobile ver-
sions (for Android and iOS) would be available with
WebVR support.

Once the setup is running and a X3D volume ren-
dering scene is declared, loading a VR experience is
as easy as loading a URL. Then the VR experience is



Figure 8: Web based volume rendering in a VR scene with WebVR. Using the INCISIX dataset from the OsiriX repos-
itory (OsiriX, 2016). Left: inspection from a far point of view. Right: Visualization from a closer point of view. The
wireframe cube and the solid colored spheres help the users to know their location at any time.

started by clicking in a Enter VR button or the white
goggles icon, see Fig. 8.

3.6 VR experience enhancements

One of the key elements in the success of the VR is
to control how the VR experiences are perceived by
the users. In this regard, the transitions from non-VR
to VR and backwards should be controlled. In addi-
tion to this, any sudden change in the scene should
be carefully treated to avoid intrusive pop-up effect in
the user field of view.

In our prototypes, DICOM files (through Corner-
stone JavaScript library) are loaded asynchronously,
i.e, each slice of the volumetric dataset is retrieved
as soon as it is loaded by the library. Therefore, ini-
tially the 3D scene could be empty, which is some-
thing to avoid in order to reduce stress to the users:
being floating in empty space is against ergonomic
rules regarding VR (Rebenitsch, 2015).

To solve this potential situation, the empty 3D
cube where the volume will be loaded is surrounded
with a 3D wireframe with colored solid spheres in
the corners of the cube (see Fig. 8). This solution
offers two benefits: i) the scene is not empty while
the dataset is being loaded and ii) the colored spheres
give visual clues of the orientation of the scene that
can be used in case the users got lost. In our tests, this
3D visual clue has been proved very helpful in VR
environment, but also in non-VR setups.

The HMD’s like Oculus Rift are more focused in
immersive environments where the user is transported
to a virtual world that can be navigated and explored
in first person. In our case, the typical navigation and
exploration of the volumetric dataset is more compat-
ible with the orbit navigation style, which conflicts
somehow with the nature of the VR. We refer the

reader to this collection of publications (Christie and
Olivier, 2009) to get an insight of the different camera
styles in virtual environments.

Our solution to cope with this situation was to
map the VR interaction capabilities to the actions that
should be carried out when the volumetric datasets are
being displayed:

• Mouse: Typically in VR, the mouse rotates the
user in the world. In our case, the mouse rotates
the 3D volumetric dataset around its center, like
in the orbit navigation style.

• Arrow Keys: Typically in VR, the keys allow to
move freely in the virtual scene (in walking or
flying mode). In our case, the keys have been dis-
abled. In order to get closer to the volume or to
inspect it from the inside, the wheel mouse is used
to zoom into the scene.

• Head tracking: The modern HMD’s provide in-
formation about where the user is looking at. We
kept this functionality as it would be very intru-
sive to remove this functionality.

• Information display: In VR mode we remove all
the UI elements (TF editor, window level man-
agement...) in order to provide a clean VR expe-
rience. Only the Exit VR button is present. In pre-
liminary tests we added another button to reset the
viewpoint in case the user got lost, but ultimately,
it was discarded. It was easier for the user to get
out VR mode in that extreme case.

The resulting VR experience allows to inspect the
volumetric dataset from any point in an easy and
straightforward manner.



4 Conclusions

This work has introduced our preliminary efforts
to bring VR and non-VR volumetric visualizations on
the Web by using a combination of open web tech-
nologies: WebGL, WebVR and X3D. DICOM files
are supported through the Cornerstone JavaScript li-
brary, providing a custom piece of code to construct
a texture atlas in the client. A X3DOM implementa-
tion of the volume rendering nodes has been used to
render the texture atlas.

Some UI elements and visual clues have been
added to help the users to interact with the volumet-
ric information (Window Level modification, interac-
tive Transfer Function editor, 3D wireframe, visual-
ization from inside the volume and VR compatible
orbit navigation style). Our preliminary research ac-
tivities have dealt with situations regarding the VR
and non-VR environments and the transitions among
them. Our results show that there is room to improve
the Human-Computer Interaction within the web en-
vironment and the current and forthcoming collection
of HMD devices: Oculus Rift, HTC Vive, Microsoft
Hololens, Samsung GearVR, PlayStation VR, Google
Cardboard and Daydream...

The presented mixture of web technologies pro-
vide a real ecosystem that can facilitate the deploy-
ment of VR experiences of volumetric datasets for
experts in their corresponding fields, but unaware of
the technological advances under the hood. This sit-
uation will democratize the access to the information
and the distribution and sharing of volumetric visual-
ization among different user groups.

Our next steps will be oriented to the further test-
ing of UI elements with real users through subjective
surveys. Additionally, we will explore the possibility
to add 3D interaction widgets into VR mode through
the combination of gesture based recognition (using
devices like Leap Motion (Leap Motion, 2016), see
Fig. 9) and novel navigation modes.

Figure 9: Leap Motion can be attached to the Oculus Rift in
order to provide gesture recognition of the user’s hands.
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