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Abstract—Before deploying their infrastructure (resources,
data, communications, ..) on a Cloud computing platform,
companies want to be sure that it will be properly secured.
At deployment time, the company provides a security policy
describing its security requirements through a set of properties.
Once its infrastructure deployed, the company want to be assured
that this policy is applied and enforced. But describing and
enforcing security properties and getting strong evidences of it is
a complex task.

To address this issue, in [1], we have proposed a language that
can be used to express both security and assurance properties
on distributed resources. Then, we have shown how these global
properties can be cut into a set of properties to be enforced
locally. In this paper, we show how these local properties can
be used to automatically configure security mechanisms. Our
language is context-based which allows it to be easily adapted
to any resource naming systems e.g., Linux and Android (with
SELinux) or PostgreSQL. Moreover, by abstracting low-level
functionalities (e.g., deny write to a file) through capabilities, our
language remains independent from the security mechanisms.
These capabilities can then be combined into security and assur-
ance properties in order to provide high-level functionalities, such
as confidentiality or integrity. Furthermore, we propose a global
architecture that receives these properties and automatically
configures the security and assurance mechanisms accordingly.
Finally, we express the security and assurance policies of an
industrial environment for a commercialized product and show
how its security is enforced.
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I. INTRODUCTION

In security, three main concepts commonly known as
the CIA-triad (not to be confused with the US agency) has
been widely used for decades: Confidentiality, Integrity and
Availability. Both the Departement Of Defense guidelines
(TCSEC/Orange Book) [2] edited in 1985 and the more re-
cent Common Criteria (ISO/IEC 15408) international standard
define security as an integration of availability, confidentiality
and integrity.

In a survey [3] on Cloud adoption practices, the Cloud
Security Alliance (CSA) indicates that 73% of the participating

industries are concerned about the security of their data. Thus,
while many companies are transitioning to Cloud computing,
they are also worried about the security risk. But Cloud
platforms lack of reliable security [4]. Furthermore, Halpern
et al. [5] state that security policies described in a natural
language have quite ambiguous semantics. To answer these
problems, we need to provide a way (a language) to let the
Cloud tenants (e.g., companies) express their security require-
ments i.e., through a security policy. This security policy must
them be enforced on the Cloud platform and assurance reports
(i.e., proofs) of this enforcement must be given to the tenants.

A single security mechanism cannot protect a heteroge-
neous and multi-layer system such as a Cloud [6]. Con-
sequently, it is a set of uncoupled (and already existing)
mechanisms that will be used to enforce the security. However,
even if the mechanisms are uncoupled, it is mandatory to
carefully take into account their capabilities (i.e., what they are
able to enforce) and configure all of them at once to provide
the wanted security. But, each of these mechanisms also comes
with its own configuration language.

In [1], we have defined a specification language for global
security properties (i.e., properties that involve distributed re-
sources). We have shown how these global properties can be
automatically cut into a set of local properties. These local
properties can be used to automatically configure security
mechanisms. Moreover, our common independent language
abstracting low-level capabilities can be used to provide proofs
of security enforcement (i.e., assurance).

As said previously, the tenants also require to receive
a proof that their security is indeed enforced during the
whole life cycle of the infrastructure. Accordingly, using our
language, the tenants can expressed their security assurance
requirements.

Once the security and assurance policies has described a set
of properties to enforce, an architecture is required to automat-
ically configure distributed and heterogeneous mechanisms.
Furthermore, this architecture must also send back assurance
reports to the tenants.

To show the usability and capacities of our solution, we



describe how our language has been used to define the security
policy of a complete industrial application. Then, we show how
our architecture is used to automatically enforce the policy and
generate assurance reports of it.

This paper is organized as follows. In Section II, we present
a set of existing security mechanisms that could be used to
provide security in Clouds, and the related work around Cloud
security and assurance. Section III describes the language and
the architecture we use for the security policy enforcement
and assurance. Section IV details an industrial use-case and
the whole process to secure it, and Section V concludes this

paper.

II. RELATED WORK

The solution proposed in this paper aims to both enforce
and assure security properties, such as confidentiality or in-
tegrity. Hence, this section first describes the works related
to the definition of security properties and their enforcement.
Then, we quickly present the security mechanisms we will use
in Section IV. Finally, we present some existing solutions for
assurance.

A. Security Policy and Enforcement

Because of the ever increasing adoption of Cloud Comput-
ing platforms, many researches have been done to improve
their security. As stated in [6], a security policy language
is required to allow the tenants to express their security
requirements. Indeed, this makes sense that the tenants define
their security as they are the ones that know the best their
infrastructure and its security requirements.

Some of works related to security policy languages are
specific to a programming language and require the modifi-
cation of the application sources. Ponder2 [7] is a distributed
object management system. The Ponder2 language can express
security and management policies for distributed systems. It
is declarative and object-oriented and can be used to declare
different types of policies. Consequently, it can only be used on
Java application augmented with the Ponder2 solution. Same
for the A4Cloud project described in [8] and its associated
language, A-PPL. Furthermore, this solution focuses on pri-
vacy and accountability, but does not address other classes of
security, such as isolation.

Works such as [9], [10] also strength the need of combing
multiple security mechanisms to provide an end-to-end and
cross-layer security. VESPA [10] is one of such architecture
for protecting cloud infrastructures using a policy-based man-
agement approach. However, this work is oriented toward the
use of automatic computing to create self-protection loops.
Consequently, they lack a language allowing the tenants to
express their security. Nonetheless, a combination with our
works could be a a way for future work. In [11], authors
present MEERKATS, a mission-oriented Cloud architecture
dedicated to security. It is composed of several components
that aim to address several types of attacks and seek to provide
high flexibility in the use of the protection mechanisms.
Nevertheless, MEERKATS lacks a simple way of expressing the
security requirements of an infrastructure. In [12], the authors
present a policy-based security framework. Their ASPF policy
consists of an attribute map (that links system elements to

their attributes) and a set of rules (indicating which actions
are allowed). While the ASPF framework can enforce security
policy, only low-level security properties can be expressed,
which makes the definition of the security policy complex.

Finally, several works such as [13] have been done around
the use of XACML to define security policies. But they focus
on a specific type of mechanisms, access control. Moreover,
XACML is a complex language [14] that requires the verifi-
cation of the policy conformance regarding its syntax and its
semantic. Furthermore, XACML does not express high level
security requirements such as integrity but rather it expresses
the policy directly using low-level capabilities. Accordingly,
the size of the security policy is larger and thus the risk of
making mistakes increases as these policies are written by
human versus generated ones. Nevertheless, it could be pos-
sible to automatically generate such policy from our security
policy language. Thus, such work could be used as a security
mechanisms by our solution. [15] presents a privacy-aware
access control system since privacy is an important concern
for most users. However, the PRIME architecture is based on
XACML and therefore presents the same limitations.

Each of these solutions either focuses on one kind of
protection (mainly access control) or uses low-level security
policy (tedious to define). To the best of our knowledge, there
is no current research on the configuration of existing security
mechanisms through a common abstract language.

B. Security Mechanisms

Many different security mechanisms exist, providing a wide
range of features. We present some of them that we use in our
solution. SELinux [16] is a Linux Security Module (LSM) pro-
viding MAC (Mandatory Access Control). PAM [17] provides
authentication management support for Linux. Iptables [18]
is a standard Linux firewall. We use the tunnel functionality
provided by OpenSSH [19] to secure the communications
between the machines.

Even if not used in this paper, cryptographic solution (such
the one presented in [20] for the security of medical records or
even homomorphic encryption [21]) could be added to the list
of the security mechanisms that our solution takes into account.
Indeed, the solution we propose is mechanism-agnostic.

C. Assurance

Operational Security Assurance [22] provides the ground
for confidence that deployed security mechanisms are running
as expected. Some researches have been done to evaluate
security assurance. For instance, Common Criteria [23] eval-
uates security functionality and assurance by means of tests
conducted by users. However, this process is static and time
consuming. Consequently, it cannot be directly applied for
a continuous evaluation of security assurance. Furthermore,
Common Criteria focuses on the implementation phase of the
product rather than on the operation phase, when the product
is used.

Assurance Profile [24] is a formalized document that
defines a common set of security assurance measurement
requirements for a service infrastructure and facilitates a future
evaluation against these needs. This is the approach selected
for the assurance framework development.



XCCDF (eXtensible Configuration Checklist Description
Format) is a standard that can perform assurance checks. It
belongs to SCAP [25], a set of specifications from NIST
to standardize the format and the naming of information
reporting concerning specific security configurations. XCCDF
provides security checklists and benchmarks to support an
automated compliance testing over a set of target systems.
OpenSCAP [26] is an auditing tool implementing SCAP and
XCCDF.

IIT. ARCHITECTURE AND LANGUAGE

As we have seen, many security mechanisms are efficient
but are focused toward a specific issue and/or type of protec-
tion. It is important to understand that we do not propose any
new or more secure mechanism, but we rather consider the
existing ones and automatically configure/coordinate them in
order to enforce high-level security properties. In this section,
we first present our functional architecture. Then, we present
our language and how it is used to enforce a security policy.
Eventually, we show how it is possible to automatically assess
the correctness of the enforcement.

A. Functional Architecture

As depicted in Fig. 1, our solution consists in a 3-steps
cycle. First, the tenant specifies its security policy using the
language detailed in Section III-B. Then, from this high-
level policy specification, the policy is enforced by firstly
selecting security mechanisms and secondly configuring them.
At the end, the policy specification and the list of selected
mechanisms are used to generate the assurance profile. The
assurance part will verify whether or not the security properties
(from the policy) are duly enforced. These assurance checks
are sent as feedbacks to the specification step to notify the
tenant if the enforcement is correct/incorrect but also if the
available mechanisms are sufficient (or not) to enforce the

policy.

1. Policy Specification

send feedback configure

generate Y

3. Assurance

2. Policy Enforcement

verify

Fig. 1: Functional Architecture

B. Policy Specification

During the policy specification step, a knowledgeable ten-
ant (i.e., a security expert) expresses a set of security properties
to enforce e.g., confidentiality, integrity.

In [1], we have defined the Cloud Security Property Lan-
guage (CSPL) that allows to specify security properties. In
particular, we have shown how to automatically transform
a property on a set of distributed objects (that we refer as
a global property) into a set of properties on local objects
(referred as local properties). In this paper, we are focusing
on the enforcement of local properties with a given security
mechanism and verifying the correct enforcement of this

property. Therefore, in the following we consider only local
properties.

CSPL is a context-based language. A context is a set of
attributes where each attribute characterizes an entity or a set
of entities. At the highest level, entities can be classified into
2 categories: subject (i.e., the active resources such as users
and processes) and object (i.e., the passive resources such as
ﬁles). For instance, the context confighApp = (File="Configuration")
: (omain="app") identifies the configuration files (attribute riie)
of an application (attribute pomain). Therefore, it is possible to
use the same set of contexts on different systems. A specific
mapping file is required for each system to associate the
resources (e.g., files, users, sockets, processes) name (e.g., the
full path of a file, the user id, IP addresses, processes name)
and the context which they belong to. For example, to associate
the application’s configuration to the corresponding files, the
following line is added to the mapping file (“o” for “object”):

o /opt/dbhook/dbhook.conf configApp

Using contexts to identify resources (or set of resources),
CSPL allows to define security properties and by relying
on contexts to address entities, the expression of security
properties is independent from the resources naming of the
target system. These properties are independent from any
security mechanism; in fact, multiple mechanisms can realize
the same security property. Our proposition is to select a
security mechanism able to enforce a given property from a
pool of available mechanisms.

For instance, the property P1 expresses that the context
SCInt integrity has to be guaranteed with the exception to
SCAuth contexts that are allowed to go against this property
i.e., no one is allowed to modify it except the resources with
the context SCAuth.

Pl:= Integrity (Context SCInt, Context SCAuth);

Then, P1 must be instantiated. For example, to specify
that the integrity of the application’s configuration files with
the context configApp should be protected and only be
the user Wlth the context adminRoot = (Username="appAdmin") : (Role=
"StandardUser |appadnin”) 1S allowed to go against, the following
property is instantiated: Integrity (configApp, adminRoot).

From the tenant’s point of view, the security properties
are abstract i.e., the tenant only considers the semantics of
the properties, and not the underlying security mechanisms.
However, the properties need to be precisely defined in order to
be enforced. Thus, we introduce the concept of capabilities. A
capability is an elementary function provided by one or several
security mechanisms. For instance, ci:= deny_all_write_accesses
context) 18 a capability that can be provided by access control
mechanisms (e.g., Unix’s DAC permissions or SELinux) but
also by other security mechanisms. It can be used to enforce
an integrity property. Consequently, the integrity property P1
can be defined as follows:

Pl:=Integrity (Context SCInt, Context SCauth) {
deny_all_write_accesses (SCInt);

allow_write_access (SCInt, SCauth);
}

The context SCInt represents an (set of) object(s) to secure,
while the context SCauth is the identity of a (set of) subject(s)



that can write to i.e., modify, SCInt. Two capabilities are
involved in thiS property. The Capability deny_all_write_accesses
denies all write accesses to the context while the capability
allow_write_access allows the context SCauth to counter the
previous capability.

In a Cloud environment, a security property can address
multiple machines (e.g., Virtual Machines). In our language,
a context mapped to an IP address refers to a machine. For
example, a mapping file can include the following lines (“c”
for “computer”):

c 192.168.30.8 hostClient
c 172.22.11.181 hostReverseProxy

The user can use particular attributes to include network-
specific metadata such as port e.g., tunserver:=hostReverseproxy
: (port="5900"). These kinds of contexts can be used in typed
security properties i.e., properties accepting only specific types
of contexts (here IP:Port). For example, confidentiality Tunnel

(hostClient, tunserver) Creates a tunnel between two machines.

In this paper and especially in our use-case (see Sec-
tion IV), we will use the following security properties. Each of
the parameter (i.e., contexts) of the properties can be a single
context or a set of contexts.

®  Isolation(Context sc1): Isolate a context SC1 from other
resources and vice-versa (e.g., it isolates an applica-
tion and its resources from the rest of the system)

L] Confidentiality (Context SCl, Context SC2): Deny every
contexts from reading a context SC1 with the exception
of the context SC2

. Integrity (Context SC1, Context sc2): Deny every contexts
from modifying SC1 with the exception of the context
SC2

[ ] Confidentiality_ Tunnel (IP:Port SC1, IP:Port SC2). Create
a secure tunnel between 2 contexts SC1 and SC2 of
types IP:Port.

®  Access(Context sC1, Context sc2): Allow  connections

from SC2 to SC1

L] Authentication (Context SC1, Context SC2, Context SC3):
Upon successful connection from SC1 on SC2, modify
the context of SC1 to SC3

Finally, we enrich the set of security properties with the
following assurance property :

®  Assurance(int secs): Run assurance checks at frequency
secs (i.e., every secs seconds) for every security

property.

C. Policy enforcement

The second step of our solution, the policy enforcement,
must first automatically select a set of suitable security mech-
anisms enabling the enforcement of each security property.
And then, it must automatically configure them accordingly.
The component in charge of the policy enforcement step
is call the Secure Element Extended (SEF). In the mean
time, the assurance property triggers the generation of an

assurance profile based on the security properties and the
selected mechanisms.

Let’s first present the selection and enforcement of the
security properties. Figure 2 presents the architecture of the
SEE and how it can enforce the security policy. The SE*
takes as input the security properties and the contexts/resources
mapping. The SEE also considers the security mechanisms
that are available on the system and their capabilities. Then,
it selects the right security mechanisms and enforces the
properties by configuration.

SEE

Security
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3 9 Plugins

Mapping Get
Engine |Context Plugin
SELinux ‘

‘ SELinux

1
Load\
Policy Property
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s 3| plugins
For each | Select F
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‘ SSH
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Fig. 2: Architecture of the SEZ.

First, the SEE loads the security policy i.e., the contexts,
the properties, and the contexts/resources mapping (step 1
on Figure 2). Then, the SEF iterates over security properties
of the policy. For each capability of each property (step 2),
the SEE selects a plug-in (i.e., a security mechanism) that
can apply it (steps 3 to 6). This is done by querying the
Capabilities Directory that contains the association between
the capabilities and the security mechanisms (steps 4 and 5).
Once the Plugin Selector has the list of matching mechanisms,
it selects one of them (best-effort algorithm, step 6). When a
capability/plug-in mapping has been found for the property, it
is sent to the Plugins Manager that controls the plug-ins (step
7). Then, the Plugins Manager contacts each plug-in that needs
to perform some actions (step 8) and the plug-ins configure
their associated security mechanism (step 9).

The use of plug-ins offers a modular model: new mecha-
nisms can be easily added by developing the associated plug-
in. Plug-ins implement a simple interface to communicate with
the SEE, but the way they interact with their mechanisms is
up to the plug-in’s developer.

For instance, if the SEF receives the integrity property
Integrity(confighpp, adminkoot) defined in the previous section,
it can enforce it using several security mechanisms. If this
property is enforced using SELinux, then the SEZ generates a
SELinux module that forbids any write operation to the files
labeled configApp that does not come from a user labeled
adminRoot.

The SEE also provides secure communication capabilities,
especially for the case of properties between multiple systems.
Thus, the two sides (i.e., the selected mechanisms applying to
the two contexts) of the communication must use compatible
mechanisms to enforce a property. For instance, let us consider
thﬁ pI'OpCI'ty Confidentiality Tunnel (hostClient, tunServer). The
server allows the connection of the user through the defined
port, and the client sets up the tunnel. The coordination is done
by the SEE’s communication capabilities.

Now, let’s present the generation of assurance files for the



assurance framework presented in Section III-D. To validate
the enforcement of the security policy, multiple files are gener-
ated and given as input to the Assurance step, namely the XC-
CDF and system-specific scripts. System-specific scripts are
generated using a process similar to the property enforcement:
each property definition includes an assurance specification,
using capabilities. For instance, the assurance of the integrity
property is defined as follows:
Pl:=Integrity (Context SCInt, Context SCauth) {
assurance {
boolean ¢ = true;
for (SCUserTmp IN get_all users()) {
if (SCUserTmp.Id == SCauth.Id) {
c &= check_write (SCInt, SCauth);
} else {

c &= (NOT check_write (SCInt, SCauth)); }
} return c; }}

As a result, the system-specific script will contain the
implementation of the check_write assurance capability for the
context scint and the authorized context scauch. This generated
script is called a Based Measure (BM) as it is the lowest level
of assurance measure. Therefore, the XCCDF is simply a list
of Based Measures. The XCCEF file and the related scripts are
given as input to the assurance step.

D. Assurance

In order to be able to evaluate continuously the security
assurance for a service, it is necessary to implement a process
composed of several steps: modeling, measuring, aggregation,
evaluation and presentation of the security assurance reports.
This process is supported by a set of software components
that compose our assurance framework. Fig. 3 presents our

assurance framework architecture.
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Fig. 3: Assurance Framework Architecture.

1) System Measurement Collection: As stated before, the
assurance step receives an XCCDF file and the related system-
specific scripts called Based Measures. The SEF is responsi-
ble for launching the measurement collection process realized
by the Assurance Collector Engine (ACE). This engine
includes a BM Agent which executes several system-specific

scripts. Script results are associated with some metadata
including extra information to unequivocally identify their
origins and contexts. Note that the ACE, based on OpenSCAP,
is the only assurance module deployed in each virtual machine.

Next, the Measurement Aggregator (MA) receives these
measurements from each node, validates and classifies them
according to their metadata, before storing them in the Assur-
ance DB.

2) Assurance Results Presentation: We have seen how to
execute low-level assurance checks and collect their results. In
the following, we present how to add semantics to the collected
results i.e., interpret them, and how to present all assurance
checks to the tenant in a modular and concise manner. Our
assurance model defining the entities/files relations from low-
level measures to high-level views is presented in Fig. 4.

Assurance Profile

Security Assurance View

(
1
!
1
!
!
!
1
1
8

Operational Profile

Y
: Operational Measurement
Derived Measure H Requirement

Fig. 4: Assurance Model.

First, we have not determined yet if the collected values
mean a correct or faulty enforcement i.e., we need to interpret
them. Hence, we call Derived Measure (DM) the interpreta-
tion of a Based Measure.

Depending on the number of security properties and the
size of the system (i.e., number of objects), it is possible
to have a significantly large set of assurance checks (or
Derived Measures) which can be an impediment to the tenant’s
verification task. Our solution is to hierarchically aggregate
these measurements.

Therefore, a set of Derived Measures is aggregated in
an Operational Measurement Requirement (OMR) via an
aggregation function. In particular, if all Derived Measures
have successfully passed their checks, then the OMR is marked
as successful. In other words, an OMR is a set of system
assurance checks. The Operational Profile (OP) contains both
the definition of OMRSs (i.e., the list of Derived Measures) and
the definition of Derived Measures.

Our next level of abstraction is to allow the tenant to
specify several Security Assurance Views (SAVs) where an
assurance view is an aggregation of Operational Measurement
Requirements. The definition of Security Assurance Views is
done in the Assurance Profile (AP) file.

In Fig. 3, the Assurance Modeling Tool takes in input
the Assurance Profile and the Operational Profile to maintain
a Security Assurance Model. Depending on the layer of the



assurance model (e.g., SAV, OMR, or DM), the Assurance
Assessment Engine is responsible for deciding if the collected
assurance values meet the expectations and for computing the
aggregation results.

Finally, the Assurance Visualization Tool provides a
Graphical User Interface for the user to monitor the assurance
status. For a monitored service, the user will be able to select
the different SAVs available in the Security Assurance Model.
This tool presents an assurance report adapted to the tenant’s
concerns.

To sum up, the modeling and configuration of the assurance
framework rely on the definition and refinement of 3 XML
files : 1) the AP for defining the high level measurement
requirements and the assurance views adapted to the tenant’s
concerns, 2) the OP for establishing the links with the real
environment, and 3) the XCCDF for specifying how to exe-
cute the assurance measurements. Examples of these files are
provided in Section IV.

IV. IKUSI’S USECASE

A. Description of Usecase

In this section, we present an industrial use-case based on
Ikusi application : Airport Management. It aims to provide a
centralized-operational management for airports management
services. It involves the coordination of a group of processes,
where both human and IT system interactions are required.
It is a classical 3-tier web architecture i.e., a HTTP frontend
(tier-1), an application server (tier-2) and a database (tier-3).
This architecture is deployed on top of an IaaS Cloud and is
provided to end-users through a SaaS model. Moreover, one
instance of the application server is launched for each client
i.e., for each airport.

Services provided by the architecture include the man-
agement of an operational data repository for each airport
operator and passenger, the real time management of flight
status updates, and the dynamic allocation and optimization of
assigned resources according to data from air flight companies
and airport operators.

It is based on message exchange modules, on resource
allocation and on billing management airport services to pro-
vide airlines with an operational platform based on Cloud
computing technology. It also incorporates enhanced security
solutions based on a network of secure element developed in
the SEED4C project.

The use-case is presented in Fig. 5. Four different kinds of
machines or VMs are involved. First, the machine ctseedl
is the client machine. It is the device that is used within
the airport to access the airport’s services. Secondly, the
reverseproxy VM (i.e., tier-1) is a proxy used by the end-
user to access the airport’s services. The musik VMs (both
musikl and musik2) belong to an airport (MAD! or EAS?)
and are accessed by the end-user machine through the proxy
(i.e., an instance of the application server, tier-2). The corre-
sponding VM is selected based on the location of the end-user.
Apart from their airport domain, these VMs are identical, so

'MAD: Madrid Airport code
2EAS: San Sebastian Airport code
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we only consider one of them in this use-case (the security
policy would be duplicated). Each of these VMs runs a
Musik application that accesses the database (running in the
seeddc_mysqgl machine) i.e., tier-3.

B. Security policy

Based on the use case description, a security policy is
defined through the graphical tool Sam4C (see Fig 5).

The next listing presents an excerpt from the security
policies for the different VMs of the use-case:

// Policy for the Database VM
Isolation (DomainAODB) ;

Integrity (BinaryAODB);

Integrity (ConfigAODB, AdminRoot);
Integrity (KeyAODB, AdminRoot);
Integrity (LogAODB, ServiceAODB);

Confidentiality (FileAODB, ServiceAODB);
Confidentiality (KeyAODB, AdminRoot);
Confidentiality (ConfigAODB, AdminRoot);
Confidentiality (ConfigRODB, ServiceDB);
Confidentiality (LogAODB, AdminRoot);
Confidentiality (LogRODB, AdminOperator);

Authentication (HostReverseProxy, ServiceSSH, "SystemUser|
CloudProvider |AdminRoot | AdminOperator |User");

Access (MysglPort |[MysglProxyPort|SSHPort [NTPPort, AnyIP);

Assurance (Freq) ;

// Policy for the ReverseProxy VM
Integrity (BinaryModuleWeb) ;
Integrity (BinaryWeb);

Integrity (Configleb);

Confidentiality (ConfigWeb, AdminRoot) ;
Confidentiality Tunnel (tunClient, tunServer);

Access (SSHPort [NTPPort, AnyIP);

Authentication (anyone, ServiceSSH, "SystemUser|CloudProvider
| AdminRoot | AdminOperator |User" );

The first security property (line 2) of this listing sandboxes
the whole application. Lines 4 to 7 forbid anyone to edit the
application’s binary, but allow several write accesses to its
files (configuration, keys, and logs). Lines 9 to 14 forbid read
access to the application resources except for the application
itself. Line 16 specifies the context evolution upon an SSH
connection: a role is given to the authenticating user depending
on his login data. Line 18 opens several ports for all incoming
IP addresses. Line 20 defines the assurance tests to perform.

The second part of the listing describes the policy for
the reverse proxy. Lines 23 to 25 guarantee the integrity of
the Web application. Line 27 requests the confidentiality of
the configuration files. Line 28 specifies that the network
communication between the proxy and the client should be
kept confidential. Line 30 opens some ports. Finally, line 32
manages the contexts evolution upon SSH connections.

The contexts used in this policy are associated to system
resources. An extract from the association file is displayed in
the next listing:

o /opt/dbhook (/.*)? FileAODB

o /opt/dbhook/dbhook.conf ConfigAODB
o /opt/dbhook/keys (/.*)? KeyAODB

o /opt/dbhook/log (/.*)? LogAODB

o /opt/dbhook/proxydaemon.sh BinaryAODB
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Fig. 5: Usecase Description

o /etc/rc\.d/init\.d/dbhook BinaryAODB
o /opt/oscap/ssm/results/SSM-results-$date.xml SSMResultFile
o /opt/oscap/ssm/SSM-xccdf.xml SSMXccdfFile

ServiceDB
ServiceDB
ServiceAODB
ServiceSSH

p /usr/bin/mysqld_safe
p /usr/libexec/mysqld
p /usr/bin/mysql-proxy
p /usr/sbin/sshd

u cloudprovider CloudProvider
u tenant-admin AdminRoot

u tenant-operator AdminOperator
u user User

c 172.22.11.181
c 172.22.11.178
c 212.81.220.68

HostReverseProxy
HostServerBBDD
HostClient

Lines 1 to 8 of the mapping file associate the contexts to
files. Lines 10 to 13 are for the processes, lines 15 to 18 for
the users, and lines 20 to 22 for the computers (IP addresses).

C. Security Enforcement

The security policy is enforced by several security mech-
anisms. The SEF detects what are the available mechanisms
and selects those that can enforce the properties.

In this usecase, four mechanisms collaborate to enforce the
whole policy.

1) SELinux: First security mechanism available is
SELinux. It enforces properties from three groups: isolation,
confidentiality, and integrity. To enforce them, the plug-in
generates a SELinux module.

Upon receiving an isolation property for a domain, the
plug-in creates a SELinux module to isolate all elements of
this domain from the rest of the system. Then, the plug-in
will allow some interactions corresponding to confidentiality
and integrity properties. To enforce the properties Isolation(
DomainAODB), Integrity (ConfigAODB, AdminRoot), and Confidentiality(
ConfighODB, "ServiceDB|AdminRoot") from policy, the following mod-
ule is generated (see next listing). Lines 2-5 define the domain

and SELinux contexts, while lines 7-8 give authorization rules.
Lines 12-13 associate SELinux contexts to resources.

R R - N N S R R

$ cat Aodb.te

policy_module (Rodb,1.0.0)
see_create_service_domain (Aodb)
see_create_files_type (Aodb_conf_t)
see_create_files_type (Aodb_file_t)

see_files_type_read_write (Rodb_t,Aodb_conf_t)
see_files_type_read (idAodbAdmin_t ,Aodb_conf_t)
[...]

$ cat RAodb.fc

/opt/dbhook/dbhook.conf
Aodb_conf_t,s0)

/usr/bin/mysql -proxy
Aodb_exec_t,s0)

[...]

gen_context (system_u:object_r:

gen_context (system_u:object_r:

2) PAM: The PAM plug-in enforces authentication
properties. Indeed, such property specifies how con-
texts can evolve to have correct properties applied.

Moreover, it controls the authentication rights and al-
lows or denies a user authentication. Upon encounter-
ing the property Authentication (anyone, ServiceSSH, "SystemUser|
CloudProvider |AdminRoot |AdminOperator|User"), PAM plug-in adds a
rule to PAM configuration in order to detect a successful login:

session required pam_exec.so /etc/see/scripts/notifyLogin

When a successful authentication occurs, PAM executes
the script notifyLogin (see next listing), which informs the
SEE (through Ncat) of a connection and sends data, such as

the user name, the remote host, or the date.

$ cat notifyLogin

#!/bin/sh

[ "SPAM_TYPE" = "open_session" ] || exit 0
{echo "User: S$PAM_USER"

echo "Ruser: S$SPAM_RUSER"

echo "Rhost: $PAM_RHOST"

echo "Service: $PAM_SERVICE"

echo "TTY: S$PAM_TTY"

echo "Date: ‘date"

echo "Server: ‘uname -a‘"

echo "PID: $$"




12| echo "PPID: $PPID" D. Assurance

13} | ncat -U --send-only /var/run/seePam

3) iptables: The iptables plug-in enforces the network
access properties. For instance, the iptables plug-in can allow
network communications on a specific port or from a given IP
address.

The Access properties in the use-case’s policy are used to
open some ports. For instance, the access property access (
ssuport, anyIp) is enforced using the following iptables rule:

iptables -I INPUT -m state --state NEW -p tcp --dport 22 -j
ACCEPT

The Assurance Model used in the airport management use-
case is based on the security policy and focuses on monitoring
the effectiveness of the security mechanisms. The model
checks that deployed security mechanisms (e.g., SELinux,
Iptables, and OpenSSH tunnel) are running as expected. It also
checks that the security properties are fulfilled, in terms of data
integrity, data confidentiality, and data availability.

For instance, the enforcement of the property integrity
(ConfighODB, Adminkoot) (line 5 of the security policy in Sec-
tion IV-B) can be checked using the script from listing 1. This
script is generated by the SEE during the enforcement step

(Section IV-C), depending on the properties of the security

. . ... .. policy.
This plug-in can be requested to apply additional capabili-

$ cat BM_fileInt-1.1.sh
#!/bin/bash
RET=$XCCDF_RESULT_PASS

ties by other plug-ins. For instance, the SSH tunneling plug-in
can dynamically request a specific port to be opened by the

iptab]es p]ug_in_ check_write () {su -c "test -w "$1"" $2; return $?;}
FILES=[...] # list of files in integrity property
4) SSH T l . Th SSH Tunn lm l —il‘l Ilf T USERS=[...] # list of all users
unneing. € unne g p ug enlorces OK_USERS=[...] # list of authorized users

% N o U s W —

the creation of confidential tunnels between machines inside
and outside the Cloud. Apart from the infrastructure in the ¢ for file in
Cloud, the Airport Management use-case includes physical i? for user o
machines located in the airport. As part of the use-case, we 1

need to monitor what is displayed on the machines from the

"S{FILES[@]}" ; do
"${USERS[@]}" ; do
check_write S$file Suser
WRITE_OK=§7?

S . 14 if [[ " ${OK_USERS[@]} " =" " Suser " ]] ; then
Cloud application. The remote port forwarding process comes s if [[ SWRITE_OK -ne "0" 1] ; then
with a solution to this issue allowing flows redirection. 16 RET=5XCCDF_RESULT_FAIL
17 echo "Unexpected access denial: Suser->S$file"
18 fi

The remote port forwarding process ensures the confiden- | ;..
tiality of the communication, because SSH is an encrypted 2|  if ([ $WRITE_OK -eq "O"
protocol. Furthermore, thank to the public key cryptography, 2 RET=5XCCDF_RESULT_FAIL

11 ; then

. . . . 22 echo "Unauthorized access: Suser->$file"
both sides of the communication channel are authenticated. ;|  ¢;
24/ fi
The communication between the machines is essential 2| done
26| done

since the SSH server machine has to allocate its own local
ports. They will be assigned to a SSH client in order to allow
it to do the port forwarding. The enforcement is made of 3
steps: 1) the SSH server machine allocates a local port for the
client to set up the tunnel, 2) the SSH client gets the allocated
port, and 3) the SSH client creates the remote tunnel.

Fig. 6 shows this process for a remote port forwarding
tunnel creation using the port 5900 as the port on client
machine.

1. Server local port allocation

2. Allocated port publishing (for
example 7900)

SEE 3. Tunnel creation proccess SSH SEE
® N Client:5900 €SSH Server:7900 ®
SSM SSH Plugin ~ SSM SSH Plugin

SSH Client g SSH Server
‘ Port 5300

ort 7900
&= <

&=~

Reverse port forwarding

Fig. 6: Tunnel creation process example

To enforce the tunnel, the command ssh -8 7900:0.0.0.0:5900
ctseedl@reverse-seeddc 1S executed, where 7900 is the allocated
port for the SSH server, 5900 is the objective port for the SSH
client, reverse-seedsc 1S the server’s hostname, and ctseed1 is the
user on the SSH server machine used by the client machine.

7| exit SRET

Listing 1: Script checking the integrity of a file

The script BM_fileInt-1.1.sh checks the integrity of
a file by testing which users are allowed to write it. Line
4 defines a function to check if a file can be written by a
specific user. Lines 5 to 7 get the files and users involved in
the property (not detailed here due to lack of space). Then,
the script loops over the files (line 9) and the users (line 10)
and tries to open the files for writing (line 11). If the property
and the test result do not match (lines 15 and 20), the return
value is set to XCCDF_RESULT_FAIL (lines 16 and 21), so that
the script will exit with a failure. Otherwise, the script exits
with the return value XCCDF_RESULT_PASS, indicating that the
integrity property has been properly enforced.

As presented before, the assurance framework is steered
by 3 files, namely the Assurance Profile (AP), the Operational
Profile (OP) and the XCCDF.

The excerpt of the Assurance Profile presented in List-
ing 2 defines one Security Assurance View (SAV) with two
Operational Measurement Requirements (OMRs), OMR_1 and
OMR_3 (lines 10-11), needed for the evaluation of data integrity
(lines 7-13).

1 [...]
2| <SecurityAssuranceView id="SAV_1">
3| <Statement>Security Functions effectiveness</Statement>



<SAVObject id="1_Data_Int">
<Description>Data Integrity</Description>
<MetricsAggregFunction>#%t </MetricsAggregFunction>
<Metric id="SF_Int_Active">
<Description>Availability of security functions affecting

data integrity</Description>

<RegAggregFunction>#t==##</ReqAggregFunction>
<ConcernedMeasurementReq>0MR_1 </ConcernedMeasurementReq>
<ConcernedMeasurementReq>0MR_3</ConcernedMeasurementReq>
[...]
</Metric>
[...]

</SAVObject>
[...]

</SecurityAssuranceView>

[

Listing 2: AP file for the Airport Management use case.

The XCCDF file in Listing 3 defines the last step of the
measurement chain. It specifies the assurance checks (with
their related scripts, for example BM_fileInt-1.1.sh, line
14) that have to be executed to collect the base measures
(here, BM-fileInt-1.1, lines 9 to 16) needed to evaluate
upper levels of the assurance model.

O 0 N s W —

0
11

w0 -

w

[

<Profile id="properties_IO">
<description>Properties Assurance</description>
<select idref="BM-fileInt-1.1" selected="true" />
<select idref="BM-fileConf-1.1" selected="true" />
<select idref="BM-netConf-1.1" selected="true" />
</Profile>
<Group id="properties_group">
<Rule id="BM-fileInt-1.1" selected="true">
<title>File Integrity</title>
<description>Check that file integrity is enforced</
description>
<check system="http://open-scap.org/page/SCE">
<check-import import-name="stdout" />
<check-content -ref href="BM_fileInt-1.1.sh"/>
</check>
</Rule>
[...]
</Group>

L]

Listing 3: XCCDF file for the Airport Management use case.

In order for the Assurance Profile and the XCCDF file
to inter-operate, the Operational Profile (Listing 4) links
the Operational Measurement Requirements OMR_3 of the
Assurance Profile (lines 13 to 18) with the Based Measures
BM-fileInt-1.1 of the XCCDF file (lines 3 to 9). It also
specifies the machine from which to collect this data (line 7).

[...]

<DerivedMeasures>
<DerivedMeasure id="DM-filelnt —1.1—musikl”™>
<Description>Check that file integrity is effective</
Description>
<InterpretFunction>"pass”.equals ($0)</InterpretFunction>
<ConcernedBaseMeasure>BM-fileInt —1.1</ConcernedBaseMeasure
>
<ConcernedDevice>Musik1</ConcernedDevice>
<Periodicity>180000</Periodicity>
</DerivedMeasure>

[...]
</DerivedMeasures>
<MeasurementRequirements>
<MeasurementRequirement id="OMR_3">
<MRAggregFunction># t ==##</ MRAggregFunction>
<DerivedMeasure>DM-fileInt —1.1—musik1</DerivedMeasure>
<DerivedMeasure>DM-fileInt —1.1—musik2</DerivedMeasure>
<DerivedMeasure>DM-fileInt —1.1-db</DerivedMeasure>
</MeasurementRequirement>
[...]
</MeasurementRequirements>

[...]

Listing 4: OP file for the Airport Management use case.

The Assurance Collector Engine executes the script
BM fileInt-1.1.sh (listing 1) in order to check to enforce-
ment of integrity properties in the security policy (here, the
property on line 5 of the policy).

Both the Assurance Profile and the Operational Profile are
imported in the Assurance Modeling Tool and derived into the
Airport Management Assurance Model, displayed in Fig. 7
by the Assurance Visualization Tool. The model shows the
Security Assurance Views defined in the Assurance Profile,
in this case the Security Functions effectiveness view, with its
corresponding measurement requirements fed by the assurance
checks. The left framework of the model allows the navigation
by the model structure and shows the assurance compliance
in a colour basis. The right framework shows the details
on the selected model component. In this case it shows the
base measures corresponding to SELinux (MAC) mechanisms
status, but the results obtained from the integrity property
verification can also be displayed.
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Fig. 7: Airport Management Assurance Model Evaluation and Visu-
alization.

E. Results

Table I presents some statistics concerning the security
policy for this usecase.

Number of
Templates 8
Properties 47
For the client node 1
For the proxy VM 7
For the application VM 12
For the database VM 27

SSMs collaborating to enforce the security properties | 5

(SELinux, iptables, PAM, SSH, Oscap)
Assurance scripts for the properties 8
Assurance scripts for the SSMs 4

TABLE I: Use-case Policy Statistics

As we can see, the policy for this use-case uses only 8
different properties templates, since our high-level properties
cover a wide range of security needs. The policy itself uses



50 contexts and 47 properties for the protection of the whole
use-case, which is a very low number considering all the se-
curity functionalities covered. Moreover, this policy is entirely
generated from a GUI, so the Cloud tenant does not have to
write these contexts and properties himself. Besides, this policy
manages both the enforcement and the assurance, so that Cloud
tenant has information about the status of the enforcement,
through a graphical dashboard.

V. CONCLUSION

In this paper, we have presented a solution to specify,
enforce and assure security properties in a Cloud environment.
Our solution handles the enforcement by re-using existing
security and assurance mechanisms, such as SELinux, iptables,
PAM, SSH, or Oscap. Our solution is composed of several
elements: 1) a language that can express the security and assur-
ance properties independently from the system, the resources
naming, and the available mechanisms, 2) an enforcement
engine, the SEE, that receives the properties and enforces
them by configuring existing mechanisms, and 3) an assurance
framework that models, measures, aggregates, evaluates and
presents the security assurance results. Our solution has shown
its efficiency on a complete industrial use-case for airport
system management: 1) the policy expressing the security
requirements of the use-case has been defined, 2) the policy
has been enforced using several mechanisms that collaborate to
offer an end-to-end protection (across the different machines),
and 3) the assurance framework has confirmed the proper
enforcement of the security policy.

In our future works, we will define generic policy templates
that could be used to secure the system base, in addition to
the policy on the tenant’s software architecture. This added
protection would improve the overall security of the system.
Besides, we plan to extend the language so that the results
generated by the assurance framework are sent back to the
enforcement engine: this would allow the enforcement engine
to update the configuration of the security mechanisms to adapt
the protection in case something is not working as expected.
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